A Tricky Example

Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\left\langle 2 y^{3 / 2}, 3 x \sqrt{y}\right\rangle$ and C is the part of the parabola $y=x^{2}$ joining the point $P_{1}(-1,1)$ to the point $P_{2}(2,4)$.

We will evaluate this integral in two different ways.

Directly by parameterizing the curve

We can parameterize the indicated section of the parabola by:

$$
\begin{aligned}
& x(t)=t \\
& y(t)=t^{2}
\end{aligned} \quad \text { for }-1 \leq t \leq 2
$$

With these parameterizations for the x and y coordinates of points along the curve, we have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P(x, y) d x+Q(x, y) d y
$$

where P and Q are the x and y component functions, respectively, of the field \mathbf{F}. Substituting in the parameterized values for x and y into these component functions and replacing $d x$ with $x^{\prime}(t) d t$ and $d y$ with $y^{\prime}(t) d t$ gives

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t=-1}^{2} 2\left(t^{2}\right)^{3 / 2} d t+3 t \sqrt{t^{2}}(2 t) d t
$$

Here's where we have to be very careful in evaluating this definite integral. Each term in the integrand involves a square root of a square (note that $\left.\left(t^{2}\right)^{3 / 2}=\left(\sqrt{t^{2}}\right)^{3}\right)$.

Where t can take on positive and negative values, which it certainly does over the interval $[-1,2], \sqrt{t^{2}}=|t|$, not just t. Therefore, we have

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{t=-1}^{2} 2|t|^{3} d t+6 t^{2}|t| d t \\
& =\int_{t=-1}^{0} 2|t|^{3} d t+6 t^{2}|t| d t+\int_{t=0}^{2} 2|t|^{3} d t+6 t^{2}|t| d t
\end{aligned}
$$

Over the interval $[-1,0],|t|=-t$ and over the interval $[0,2],|t|=t$. Therefore, our integral becomes

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{t=-1}^{u}-2 t^{3} d t-6 t^{3} d t+\int_{t=0}^{2} 2 t^{3} d t+6 t^{3} d t \\
& =\int_{t=-1}^{0}-8 t^{3} d t+\int_{t=0}^{2} 8 t^{3} d t \\
& =-\left.2 t^{4}\right|_{-1} ^{0}+\left.2 t^{4}\right|_{0} ^{2} \\
& =(0-(-2))+2\left(2^{4}\right) \\
& =34
\end{aligned}
$$

Using the Fundamental Theorem for Line Integrals.

The vector field $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle=\left\langle 2 y^{3 / 2}, 3 x \sqrt{y}\right\rangle$ is conservative since $P_{y}=3 y^{1 / 2}=Q_{x}$. Therefore, there is a scalar potential function $f(x, y)$ such that $\nabla f=\mathbf{F}$. To find such a potential f, we equate the components of ∇f with the corresponding components of \mathbf{F} to get

$$
\begin{aligned}
& f_{x}=2 y^{3 / 2} \\
& f_{y}=3 x y^{1 / 2}
\end{aligned}
$$

Integrating f_{x} with respect to x gives $f(x, y)=2 x y^{3 / 2}+g(y)$, where $g(y)$ is some unknown function of y. Now differentiate this function with respect to y and compare it to the f_{y} shown previously. We get

$$
\frac{\partial}{\partial y}\left(2 x y^{3 / 2}+g(y)\right)=3 x y^{1 / 2}+g^{\prime}(y)
$$

But, we saw previously that $f_{y}=3 x y^{1 / 2}$, so choose $g^{\prime}(y)=0$ and so $g(y)=C$, where C is a constant. Since we need only one particular potential function, let's choose $C=0$ as well.

Therefore, a scalar potential for the field \mathbf{F} is $f(x, y)=2 x y^{3 / 2}$. Check for yourself that $\nabla f=\mathbf{F}$.
Finally, the Fundamental Theorem for Line Integrals says that

$$
\begin{aligned}
\int_{C} \nabla f \cdot d \mathbf{r} & =\int_{P_{1}}^{P_{2}} \nabla f \cdot d \mathbf{r} \\
& =f\left(P_{2}\right)-f\left(P_{1}\right) \\
& =f(2,4)-f(-1,1) \\
& =2(2)(4)^{3 / 2}-2(-1)(1)^{3 / 2} \\
& =32+2 \\
& =34
\end{aligned}
$$

This agrees with the result found previously by directly evaluating the line integral.

