1. An object's velocity \mathbf{v} (in meters per second) at time t seconds is given by $\mathbf{v}(t)=2 t \hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}+\frac{1}{t} \hat{\mathbf{k}}$, for $t>0$ seconds. Using this function do the problems below.
(a) Find the position function $\mathbf{r}(t)$, given that $\mathbf{r}(1)=\mathbf{0}$.
(b) Find the objects speed at $t=1$ second.
(c) Find the acceleration function $\mathbf{a}(t)$, and the acceleration vector at $t=1$ second.
(d) How far along the curve does the object travel between 1 and 5 seconds; i.e. what is the arc-length of the curve over $1 \leq t \leq 5$?
(e) Find the unit tangent vector function $\mathbf{T}(t)$, then find the unit tangent vector at $t=1$.
(f) Find the curvature κ of the curve at $t=1$ second.
2. Find the unit tangent vector \mathbf{T} for the vector position function $\mathbf{r}(t)=\langle t, 2 \sin (t), 3 \cos (t)\rangle$ at $t=\pi / 6$.
3. Evaluate the integral $\int_{0}^{\pi / 4} \cos (2 t) \hat{\boldsymbol{\imath}}+\sin (2 t) \hat{\boldsymbol{\jmath}}+t \hat{\mathbf{k}} d t$.
4. Find the length of the curve $\mathbf{r}(t)=\left\langle t \sqrt{2}, e^{t}, e^{-t}\right\rangle, 0 \leq t \leq 1$.
5. Find the unit tangent vector $\mathbf{T}(t)$ and the unit normal vector $\mathbf{N}(t)$ for the curve $\mathbf{r}(t)=\left\langle\frac{1}{3} t^{3}, t^{2}, 2 t\right\rangle$.
6. Find the curvature of the curve $\mathbf{r}(t)=\langle\sin (t), \cos (t), \sin (t)\rangle$.
7. Find the velocity, acceleration and speed of the particle with position function $\mathbf{r}(t)=\left\langle t^{2}, t, t^{3}\right\rangle$ at $t=1$.
8. Find the tangential and normal components of the acceleration vector if $\mathbf{r}(t)=\cos (t) \hat{\boldsymbol{\imath}}+\sin (t) \hat{\boldsymbol{\jmath}}+t \hat{\mathbf{k}}$.
9. Let $\mathbf{r}(t)=\langle 3 \sin (t), 4 t, 3 \cos (t)\rangle$ be a vector valued function which describes a curve.
(a) Reparametrize \mathbf{r} in terms of arclength s.
(b) Find \mathbf{T} and \mathbf{N} (the unit tangent and normal vectors respectively) to the curve at the point $(0,0,3)$.
(c) Find the equation of the normal plane at the point $(0,0,3)$.
10. Given the accelleration of a particle $\mathbf{a}(t)=\left\langle t, t^{2}, \cos (2 t)\right\rangle$, with initial velocity $\mathbf{v}(0)=\langle 1,0,1\rangle$ and initial position $\mathbf{r}(0)=\langle 0,1,0\rangle$
(a) Find the velocity $\mathbf{v}(t)$.
(b) Find the postion $\mathbf{r}(t)$.
