1. Evaluate $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin (x) \cos (y) d y d x$.

Ans: 1
2. Given the iterated integral $\int_{0}^{1} \int_{\sqrt{x}}^{1} x \sqrt{y} d y d x$,
(a) Sketch the region of integration.
(b) Evaluate it directly in the given order.

Ans: 1/11
(c) Evaluate it by first reversing the order of integration.

Ans: $\int_{y=0}^{1} \int_{x=0}^{y^{2}} x \sqrt{y} d x d y=\frac{1}{11}$
3. Evaluate $\int_{0}^{1} \int_{0}^{x^{2}}(x+2 y) d y d x$.

Ans: 9/20
4. Evaluate $\iint_{D} y^{3} d A$, where D is the triangular region with vertices $(0,2),(1,1)$, and $(3,2)$.

Ans: $\int_{1}^{2} \int_{2-y}^{2 y-1} y^{3} d x d y=147 / 20$
5. Evaluate by changing to polar coordinates $\iint_{R} x d A$, where R is the disk with center at the origin and radius 5.
Ans: 0
6. Evaluate by converting to polar coordinates

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} e^{x^{2}+y^{2}} d y d x
$$

Ans: $\int_{0}^{\pi / 2} \int_{0}^{1} e^{r^{2}} r d r d \theta=\frac{\pi(e-1)}{4}$
7. Find the volume of the region lying under the graph of the function

$$
z=f(x, y)=\cos \left(x^{2}+y^{2}\right)+1
$$

and over the ring of inner radius 1 and outer radius 3 in the $x y$-plane centered on the origin. Hint: The volume is given by $\iint_{D} f(x, y) d A$ and try integrating in polar coordinates.
Ans: $\int_{0}^{2 \pi} \int_{1}^{3}\left(\cos \left(r^{2}\right)+1\right) r d r d \theta=\pi(8-\sin (1)+\sin (9))$
8. Given the double integral below, make a reasonably large sketch of the region of integration, then switch the order of integration (making the appropriate changes to the limits of integration) to evaluate the integral.

$$
\int_{0}^{3} \int_{y^{2}}^{9} y \cos \left(x^{2}\right) d x d y
$$

Ans: $\int_{0}^{9} \int_{0}^{\sqrt{x}} y \cos \left(x^{2}\right) d y d x=\frac{1}{4} \sin (81)$
9. Write and evaluate a double integral which will give the volume of the solid under the surface $z=2 x+y^{2}$ and above the region bounded by $x=y^{2}$ and $x=y^{3}$.
Ans: $\int_{0}^{1} \int_{y^{3}}^{y^{2}} 2 x+y^{2} d x d y=\frac{19}{210}$
10. A washer in the form of a circular ring with inner radius a and outer radius b has a density ρ at any point which is inversely proportional to the distance of that point from the center of the washer. Write and evaluate a double integral which gives an expression for the mass of the washer. Note: mass $=$ (density)(area).
Ans: $\int_{0}^{2 \pi} \int_{a}^{b} \frac{k}{r} r d r d \theta=2 k \pi(b-a)$, where k is the constant of proportionality
11. Evaluate the iterated integral $\int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} d z d x d y$.

Ans: $\frac{8}{15}$
12. Evaluate $\iiint_{E} x z d V$, where E is the solid tetrahedron with vertices $(0,0,0),(0,1,0),(1,1,0)$, and ($0,1,1$).
Ans: $1 / 120$
13. Evaluate $\iiint_{E} x d V$, where E is bounded by the paraboloid $x=4 y^{2}+4 z^{2}$ and the plane $x=4$.

Ans: $16 \pi / 3$
14. Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$ and below the cone $z^{2}=4 x^{2}+4 y^{2}$.
Ans: $2 \pi / 5$
15. Evaluate the integral $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2-x^{2}-y^{2}}\left(x^{2}+y^{2}\right)^{3 / 2} d z d y d x$ by changing to cylindrical coordinates.

Ans: $8 \pi / 35$
16. Set up and evaluate a triple integral in spherical coordinates that gives the mass of the solid hemisphere $x^{2}+y^{2}+z^{2} \leq a^{2}, z \geq 0$, if its density δ is proportional to distance z from its base ($\delta=k z$, where k is a positive constant).
Ans: mass $=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{a}(k \rho \cos (\phi))\left(\rho^{2} \sin (\phi)\right) d \rho d \phi d \theta=\frac{1}{4} a^{4} k \pi$

