1. Consider the three points $A(1,-1,2), B(1,0,1)$ and $C(-2,3,5)$.
(a) Find parametric equations for the line that contains points $A$ and $C$, then eliminate the parameter to get the symmetric equation of the line.
(b) Find the linear equation $(a x+b y+c z=d)$ of the plane in 3-space which passes through the three points, then determine whether or not the point $(1,2,9)$ lies on the plane.
2. Let $\mathbf{a}=\langle-4,8,1\rangle$ and $\mathbf{b}=\langle 6,-2,3\rangle$ be vectors in $\mathbb{R}^{3}$.
(a) Find, to the nearest degree, the angle between the vectors.
(b) Find a unit vector in the same direction as vector $\mathbf{b}$.
3. Find an equation of the plane passing through the point $(2,4,-3)$ and having normal vector $\langle-1,3,2\rangle$.
4. The velocity of a particle moving in space is given by

$$
\mathbf{v}(t)=\frac{d \mathbf{r}}{d t}=-\sin (t) \mathbf{i}+\cos (t) \mathbf{j}+3 \hat{\mathbf{k}}
$$

(a) Find the position vector $\mathbf{r}(t)$ at time $t=\pi$ if the position vector at time $t=0$ is $\mathbf{i}+3 \hat{\mathbf{k}}$.
(b) Find the distance travelled by the particle along the curve from time $t=0$ to $t=\pi$. Hint: In a time $d t$ the particle travels a distance of $d s=|\mathbf{v}(t)| d t$.
5. Let the vector function $\mathbf{r}(t)=\left(e^{t} \sin t\right) \mathbf{i}+\left(e^{t} \cos t\right) \mathbf{j}+\left(e^{t}\right) \mathbf{k}$ describe the position of a particle at time $t$.
(a) Find the velocity vector and speed of the particle at time $t=0$.
(b) Find the distance the particle travels over the interval $0 \leq t \leq 3$. Hint: This is the same as the arclength of the curve $\mathbf{r}(t)$ over the same interval.
6. Verify that $\quad u=e^{-\alpha^{2} k^{2} t} \sin (k x)$ is a solution to the heat conduction equation $u_{t}=\alpha^{2} u_{x x}$, where $\alpha$ and $k$ are constants.
7. The radius of a right circular cone is increasing at the rate of $1.8 \mathrm{in} / \mathrm{s}$ while the height is decreasing at a rate of $2.5 \mathrm{in} / \mathrm{s}$. Find the rate at which each of the following are changing when the radius is 120 in . and the height is 140 in .
(a) The volume $V$ of the cone.
(b) The surface area $S$ of the cone.

Hint: For a cone, $V=\frac{1}{3} \pi r^{2} h$ and $S=\pi r \sqrt{r^{2}+h^{2}}$.
8. Consider the function $f(x, y)=-x^{4}+8 x^{2}-y^{2}-1$.
(a) Find the directional derivative of $f$ at the point $(1,1)$ in the direction of the vector $\langle 3,-4\rangle$.
(b) What is the maximum rate of change of $f$ at the point $(1,1)$ and in which direction (as given by a vector) does it occur?
(c) Find all the critical points of $f$
(d) Use the second derivative test for a function of two variables to determine the nature of $f$ (max, min or saddle point) at each critical point.
9. The temperature $T$ (in degrees Celcius) at point ( $x, y, z$ ) is given by $T(x, y, z)=e^{-x^{2}-3 y^{2}-9 z^{2}}$, where $x, y, z$ are measured in meters.
(a) Find the rate of change of the temperature at the point $P(2,-1,2)$ in the direction toward the point $(3,-3,3)$.
(b) In which direction does the temperature increase fastest at $P$ ?
(c) Find the maximum rate of increase of $T$ at $P$.
10. Let $f(x, y)=x^{2}+2 y^{2}-x^{2} y$.
(a) Find all critical points of $f$.
(b) Use the second derivative test for functions of two variables to determine the nature of $f$ at each critical point (max, min or saddle point).
(c) Find the absolute maximum and minimum values of $f$ on the closed disk $x^{2}+y^{2} \leq 1$.
11. Find the Lagrange multiplier equations for the point on the surface

$$
x^{4}+y^{4}+z^{4}+x y+y z+x z=6
$$

at which $x$ is largest. (Do NOT solve.)
12. Give the exact value of the iterated integral below. You must do the calculations "by hand" to get credit.

$$
\int_{0}^{\pi / 6} \int_{1}^{4} x \sin (y) d x d y
$$

13. Evaluate $\int_{0}^{1} \int_{0}^{x^{2}}(x+2 y) d y d x$.
14. Evaluate the double integral $\iint_{D} e^{x / y} d A$, where $D$ is the triangular region $\{(x, y) \mid x \geq 0, y \leq 1, y \geq x\}$.
15. Evaluate $\iint_{D} e^{x^{2}+y^{2}} d A$, where $D$ is the region within the circle $x^{2}+y^{2}=1$ above the $x$-axis. Hint: Use polar coordinates.
16. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\mathbf{i}+y e^{x / y} \mathbf{j}$ and $C$ is the positively oriented triangle with vertices $(0,0),(1,1)$ and $(0,1)$.
17. Evaluate $\int_{C} x y^{3} d s$, where $C$ is the curve parameterized by $x=4 \sin t, y=4 \cos t, z=3 t$, for $0 \leq t \leq \frac{\pi}{2}$.
18. Let $\mathbf{F}(x, y)=\left\langle 2 x y, x^{2}+y\right\rangle$ be a vector field and let $C$ be a curve given by $\mathbf{r}(t)=\left\langle t^{2}, t / \sqrt{t+2}\right\rangle$, for $0 \leq t \leq 2$.
(a) Show that $\mathbf{F}$ is a conservative field.
(b) Find a potential function $f$, such that $\nabla f=\mathbf{F}$.
(c) Evaluate the line integral below either directly, or by replacing the given path $C$ with a simpler path connecting the same endpoints or by using the potential function found above.

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

19. Let $\mathbf{F}(x, y)=\langle x y, x\rangle$ be a (non-conservative) vector field and let $C$ be the unit circle described by $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}$, for $0 \leq t \leq 2 \pi$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ by:
(a) doing the actual line integral.
(b) Using Green's Theorem.
20. Let $\mathbf{F}(x, y)=\left\langle 3 x y^{2}+4 x, 3 x^{2} y-4 y\right\rangle$ be a vector field representing the flow of a fluid in the plane. Let $C$ be the positively oriented boundary of the semi-circular disk bounded by the $x$-axis and the circular $\operatorname{arc} y=\sqrt{4-x^{2}}$.
(a) Find the net circulation of the field $F$ around the curve $C$.
(b) Find the net flux of the field $F$ through the curve $C$. Hint: Use the normal form of Green's Theorem: Flux of $F$ through $C=\oint_{C} \mathbf{F} \cdot \hat{\mathbf{n}} d s=\iint_{D} \operatorname{div} \mathbf{F} d A$
